Packings in real projective spaces

نویسندگان

  • Matthew C. Fickus
  • John Jasper
  • Dustin G. Mixon
چکیده

This paper applies techniques from algebraic and differential geometry to determine how to best pack points in real projective spaces. We present a computer-assisted proof of the optimality of a particular 6-packing in RP, we introduce a linear-time constant-factor approximation algorithm for packing in the so-called Gerzon range, and we provide local optimality certificates for two infinite families of packings. Finally, we present perfected versions of various putatively optimal packings from Sloane’s online database, along with a handful of infinite families they suggest, and we prove that these packings enjoy a certain weak notion of optimality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Packings in Projective Spaces and Grassmannian Spaces via Alternating Projection

This report presents a numerical method for finding good packings on spheres, in projective spaces, and in Grassmannian manifolds equipped with various metrics. In each case, producing a good packing is equivalent to constructing a matrix that has certain structural and spectral properties. By alternately enforcing the structural condition and then the spectral condition, it is frequently possi...

متن کامل

Constructing Packings in Grassmannian Manifolds via Alternating Projection

This paper describes a numerical method for finding good packings in Grassmannian manifolds equipped with various metrics. This investigation also encompasses packing in projective spaces. In each case, producing a good packing is equivalent to constructing a matrix that has certain structural and spectral properties. By alternately enforcing the structural condition and then the spectral condi...

متن کامل

Bundles over Quantum RealWeighted Projective Spaces

The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1)-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that genera...

متن کامل

Spaces of Rational Loops on a Real Projective Space

We show that the loop spaces on real projective spaces are topologically approximated by the spaces of rational maps RP → RP. As a byproduct of our constructions we obtain an interpretation of the Kronecker characteristic (degree) of an ornament via particle spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.01858  شماره 

صفحات  -

تاریخ انتشار 2017